EJERICICOS DE LÓGICA
| 1 EC, ID, DN, IC | -1 (s -> t) & (r & t) I- (s -> t) & r |
| 2 EC, ID, DN, IC | -1 (p & q) & (r & s) I- p & r |
| 3 EC, ID, DN, IC | -1 (p -> q) & ¬¬ (r v q) I- (p -> q) & ( r v s) |
| 4 EC, ID, DN, IC | -1 p & (q & r) I- (p & q) & r |
| 5 MP | -1. t -> q -2. s v r -> v-3. v & q -> p -4. t & s I- p |
| 6 IB | -1. p v q -> (q -> p & q) -2. r & (p & q -> q)-3. ¬¬p I- q <-> p & q-> |
| 7 IB | -1. p & ¬¬(q -> r) -2. r -> qI- q <-> r-> |
| 8 EB | -1. p <-> q-> -2. r <-> (p & q)->-3. ¬¬p I- r v s |
| 9 EB | -1. p <-> t-> -2. ¬s <-> t->-3. ¬¬ (t -> ¬s) <-> ¬¬q-> -4. p I- p & q |
| 10 IN | -1 p & q -> r -2 r -> s-3 q & ¬s I- ¬p |
| 11 IN | -1 q & (r <-> q)-> -2 ¬ r -> pI- ¬ r |
| 12 IC | -1 t -> q -2 w -> r-3 r & q -> p I- t & w -> p |
| 13 IC | -1 p -> r -2 ¬ (q -> r)I- ¬ (q -> p) |
| 14 IC | -1 p -> (q -> r) -2 s -> p & qI- ¬¬s -> r |
| 15 IC | -1 p & q -> r I- p -> (q -> r) |
| 16 ED (144) | - 1 ¬q -> r - 2 t -> ¬ q- 3 ¬ s -> ¬ q I-t v ¬s -> r |
| 17 ED | -1 p -> q -2 r -> p-3 t -> r -4 s -> r -5 t v s I- q v ¬w |
| 18 ED | -1 p & (q v r) I- (p & q) v (p & r) |
| 19 ED | -1 (p v q) v r I- p v (q v r) |
| 20 REGLAS BÁSICAS | -1 q -> ¬p -2 r -> q-3 r I- ¬p |
| 21 REGLAS BÁSICAS | -1 ¬ p -> ¬ q -2 s v ¬q -> ¬¬ r-3 ¬p I- r |
| 22 REGLAS BÁSICAS | -1 p <-> ¬¬ (q & r)-> -2 q & (r -> s)-3 p I- s |
| 23 REGLAS BÁSICAS | -1 ¬p <-> q-> -2 s v t -> ¬p-3 ¬¬ s I- q v r |
| 24 REGLAS BÁSICAS | -1 p -2 p -> ¬ q-3 p & ¬q -> ¬¬s -4 s -> ¬¬ t I- t |
| 25 REGLAS BÁSICAS | -1 p -2 p -> q-3 ¬¬( q -> ¬ s) I- ¬s |
| 26 REGLAS DERIVADAS | -1 p -> q I- ¬q -> ¬p |
| 27 REGLAS DERIVADAS | -1 ¬ p -> ¬q -2 qI- p |
| 28 REGLAS DERIVADAS | -1 q & r -> ¬s -2 sI- ¬q v ¬r |
| 29 REGLAS DERIVADAS | -1 p -> q & r -2 ¬ q v ¬ rI- ¬p |
| 30 REGLAS DERIVADAS | -1 p v q -> r -2 ¬ rI- ¬q |
| 31 REGLAS DERIVADAS | -1 ¬ p -2 q -> p-3 ¬q -> r I- r v s |
| 32 REGLAS DERIVADAS | -1 p v q -2 q -> t-3 ¬ t I- p |
| 33 REGLAS DERIVADAS | -1 ¬r v ¬q -2 t v s -> r-3 q v ¬s -4 ¬t I- ¬(t v s) |
| 34 REGLAS DERIVADAS | -1 p v q -2 t -> ¬p-3 ¬(q v r) I- ¬t |
| 35 REGLAS DERIVADAS | -1 p -> ¬s -2 s v ¬r-3 ¬ (t v ¬r) I- ¬p |
| 36 REGLAS DERIVADAS | -1 p -> q v r -2 q -> ¬p-3 s -> ¬r I- p -> ¬s |
| 37 IC | -1 p v ¬s -2 ¬r -> sI- ¬p -> r |
| 38 IC | -1 ¬(r & s) -2 q -> sI- r -> ¬q |
| 39 IC | -1 s -> r -2 s v p-3 p -> q -4 r -> t I- ¬q -> t |
| 40 IC | -1 ¬s <-> t & p-> -2 r -> ¬ sI- r-> t |
| 41 IC | -1 s & (¬p v t) -2 t -> q v rI- p -> (¬q -> r) |
| 42 IC | -1 p -> q -2 q -> r-3 r -> s v t I- ¬s & ¬t -> ¬p |
| 43 IC | -1 p v q -> (r v s -> t) I- p -> (r -> t) |
| 44 IC | -1 ¬ q -> ¬p -2 p -> (q -> r)-3 ¬(r -> s) -> ¬q I- p -> s |
| 45 IC (146) | 1 ¬s v ¬p -2 q -> ¬r-3 t -> s & r I- t -> ¬(p v q) |
| 46 IC (136) | - 1 (r v q) -> p - 2 t -> (¬p&¬m)- 3 t v s I- r -> s |
| 47 IN | -1 ¬ (p & q) -2 ¬r -> ¬p-3 ¬q -> ¬r I- ¬p |
| 48 IN | -1 t -> ¬s -2 r -> ¬t-3 s v r I- ¬t |
| 49 IN | -1 ¬(p & q) -2 ¬ q -> r-3 ¬r -> p I- r |
| 50 IN | -1 ¬(q v r) -2 t <-> ¬p->-3 p v q I- ¬t |
| 51 IN | -1 s -> ¬p -2 s v ¬r-3 ¬(t v¬r) I- ¬p |
| 52 IN | -1 p -> q v r -2 q -> ¬p-3 s -> ¬r I- ¬ (p & s) |
| 53 IN | -1 ¬r -> ¬s -2 t & r <-> ¬s->I- r |
| 54 IN | -1 ¬r v ¬q -2 t v s -> r-3 q v ¬s -4 ¬t I- ¬(t v s) |
| 55 IN (152) | -1 (p v q) -> (r & s) -2 ¬rI- ¬ p |
| 56 IN | -1 s -> p -2 r v ¬ p-3 t -> ¬r I- ¬s v ¬t |
| 57 IN | -1 p -> ¬ q -2 r -> qI- ¬(p & q) |
| 58 IN | -1 ( ¬q -> ¬p) & (¬p -> q) I- q |
| 59 IN | -1 ¬(¬p & ¬r) -2 ¬s -> ¬r-3 p -> q I- q v s |
| 60 IN | -1 ¬p -> s v r -2 ¬p & r-3 s -> q I- q v r |
| 61 REGLAS DERIVADAS | -1 p v ¬(¬q & ¬r) -2 ¬p & ¬qI- r v s |
| 62 IC | -1 ¬p -> q -2 q -> ¬rI- r -> p |
| 63 IN | -1 p -> q -2 ¬(p & r) & (r v ¬q)I- ¬p |
| | |
| 64 | - 1 s -> r - 2 s v p- 3 p -> q - 4 r -> t I- ¬ q -> t |
| 65 | - 1 t -> ¬s - 2 q -> ¬t- 3 s v q I- ¬t |
| 66 | - 1 (m&n)-> ¬t - 2 t v¬s- 3 ¬ (p v ¬s) I- ¬(m & n) |
| 67 | - 1 ¬ q v s - 2 ¬s- 3 ¬(r & s) -> q I- r |
| 68 | - 1 p v¬r - 2 ¬r -> s- 3 p -> t - 4 ¬s I- t |
| 69 | - 1 p-> ¬(s v ¬r) - 2 q -> ¬(m v r)- 3 ¬(¬u & ¬p) - 4 ¬(¬u & ¬q) I- u |
| 70 | - 1 p -> q - 2 (p->r) -> (svq)- 3 (p & q) -> r - 4 ¬s I- q |
| 71 | - 1 p -> ¬r - 2 q -> ¬s- 3 m -> (r & s) - 4 n -> (r & s) - 5 t -> ¬¬m - 6 ¬t -> ¬¬n I- ¬p v ¬q |
| 72 | - 1 (t & r) <-> s-> - 2 ¬r -> ¬sI- r |
| 73 | - 1 (p v q) -> r - 2 w-> ¬(m&s)- 3 ¬(tvn) ->m - 4 q <-> t v n-> - 5 s I- w -> r |
| 74 | - 1(p->q) & (r -> s) - 2 ¬q v ¬s- 3 ¬(p & r)->t I- t |
| 75 | - 1 ¬(¬q v ¬t) - 2 p -> m- 3 n -> ¬q - 4 p v n I- m |
| 76 | - 1¬p -> q - 2 ¬m -> n- 3 ¬r -> s - 4 ¬s -> x - 5 ¬(¬¬p v ¬¬m) - 6¬(¬¬r v ¬¬s) - 7 ¬(s -> ¬q) -> w - 8 ¬(n -> ¬x)-> u I- ¬(¬w v ¬u) |
| 77 | - 1 ¬(pvq) ->r - 2 ¬(w v m)- 3 ¬(z v n) - 4 ¬(mvn) ->t - 5 ¬(svp) - 6 ¬(u vq) I-¬(¬r v¬t) |
| 78 | - 1 p -> w - 2 q v ¬ w- 3 ¬( p & q) I- ¬ p |
| 79 | - 1 ¬(p & q) - 2 ¬r -> q- 3 ¬p -> r I- r |
| 80 | - 1 p -> q - 2 ¬ q- 3 ¬ p -> ( r & s) I- r & s |
| 81 | - 1 p & q - 2 r -> ¬q- 3 ¬r -> s I- s v¬p |
| 82 | - 1 r v s - 2 ¬t -> ¬p- 3 r -> ¬q I- (p & q) -> (s & t) |
| 83 | - 1 q -> p - 2 t v s- 3 q v ¬s I- ¬(p v r) -> t |
| 84 | - 1 p -> q - 2 (p & q) -> r- 3 ¬(p & r) I- ¬p |
| 85 | - 1 r -> ¬p - 2 ¬ (q & ¬r)I- p -> ¬q |
| 86 | - 1(s & ¬r) -> q - 2(¬t & ¬q) -> w- 3 t -> ¬m - 4 s - 5 ¬p v ¬q - 6 ¬(¬m & r) I- p -> w |
| 87 | - 1 ¬m v p - 2 q -> m- 3 x v t - 4 t -> (r & s) - 5 ( s & r )->w I-(¬p->¬q)->(¬w->x) |
| 88 | - 1 (p&q)->¬r - 2 r v (s&t)- 3 p <-> q-> I- p -> s |
| 89 | - 1 p->¬(¬rv¬s) - 2 ¬¬s ->¬u- 3 ¬m v n - 4¬n - 5 p & q I-¬(u v m) |
| 90 | - 1 t -> m - 2 ¬(u & p)- 3 n ->¬m - 4¬(¬p & ¬w) - 5 ¬n -> ¬s - 6 z -> u - 7 ¬(r v ¬t) - 8 ¬z -> s I- w v q |
| 91 | - 1 ¬p -> ¬ s - 2 ¬p v r- 3 r -> ¬t I- ¬s v ¬t |
| 92 | - 1 ¬t v ¬r - 2 ¬r -> p- 3 ¬(¬r &p) I- ¬t |
| 93 | - 1 r -> s - 2 s -> q- 3 r v (s & t) I- ¬q -> (t &s) |
| 94 | - 1 ¬r -> s - 2 s -> (p &q)- 3 r -> t - 4 ¬t I- q |
| 95 | - 1 ¬s v ¬r - 2 ¬r -> ¬t- 3 ¬p I- ¬t & ¬p |
| 96 | - 1 (r v q) -> p - 2 t -> (¬p&¬m)- 3 t v s I- r -> s |
| 97 | - 1 r -> n - 2 t -> (p v r)- 3 (q v n) -> t - 4 ¬n I- ¬p -> ¬q |
| 98 | - 1 ¬q -> ¬(mvt) - 2 ¬r -> ¬(p&q)- 3 ¬s -> p - 4 ¬n-> t I- ¬(r v s) -> n |
| 99 | - 1 p -> q - 2 p->(q -> r)- 3 q->( r -> s) I- p -> s |
| 100 | - 1 ¬p -> ¬s - 2¬p v r- 3 r -> ¬t I- ¬s v ¬t |
| 101 | - 1 ¬(m v n) - 2 s -> ¬t- 3 ¬m -> t I- ¬(s & q) |
| 102 | - 1 p->(q<->s)-> - 2 ¬s & m- 3 p v ¬q - 4 q & t I-(¬p &t) v (w & r) |
| | |
| 103 | - 1¬(m & ¬n) - 2¬(t & ¬u)- 3 ¬(n &¬p) - 4 ¬(s & ¬t) - 5¬(q & ¬r) - 6¬ (u v w) - 7 ¬(r &¬s) - 8 ¬(p &¬q) I- ¬m |
| 104 | - 1 s -> r - 2 s v p- 3 p -> q - 4 r -> t I- ¬ q -> t |
| 105 | - 1 t -> ¬s - 2 q -> ¬t- 3 s v q I- ¬t |
| 106 | - 1 (m&n)-> ¬t - 2 t v¬s- 3 ¬ (p v ¬s) I- ¬(m & n) |
| 107 | - 1 ¬ q v s - 2 ¬s- 3 ¬(r & s) -> q I- r |
| 108 | - 1 p v¬r - 2 ¬r -> s- 3 p -> t - 4 ¬s I- t |
| 109 | - 1 p-> ¬(s v ¬r) - 2 q -> ¬(m v r)- 3 ¬(¬u & ¬p) - 4 ¬(¬u & ¬q) I- u |
| 110 | - 1 p -> q - 2 (p->r) -> (svq)- 3 (p & q) -> r - 4 ¬s I- q |
| 111 | - 1 p -> ¬r - 2 q -> ¬s- 3 m -> (r & s) - 4 n -> (r & s) - 5 t -> ¬¬m - 6 ¬t -> ¬¬n I- ¬p v ¬q |
| 112 | - 1 (t & r) <-> s-> - 2 ¬r -> ¬sI- r |
| 113 | - 1 (p v q) -> r - 2 w-> ¬(m&s)- 3 ¬(tvn) ->m - 4 q <-> t v n-> - 5 s I- w -> r |
| 114 | - 1(p->q) & (r -> s) - 2 ¬q v ¬s- 3 ¬(p & r)->t I- t |
| 115 | - 1 ¬(¬q v ¬t) - 2 p -> m- 3 n -> ¬q - 4 p v n I- m |
| 116 | - 1¬p -> q - 2 ¬m -> n- 3 ¬r -> s - 4 ¬s -> x - 5 ¬(¬¬p v ¬¬m) - 6¬(¬¬r v ¬¬s) - 7 ¬(s -> ¬q) -> w - 8¬(n -> ¬x)-> u I- ¬(¬w v ¬u) |
| 117 | - 1 ¬(pvq) ->r - 2 ¬(w v m)- 3 ¬(z v n) - 4 ¬(mvn) ->t - 5 ¬(svp) - 6 ¬(u vq) I-¬(¬r v¬t) |
| 118 | - 1 p -> w - 2 q v ¬ w- 3 ¬( p & q) I- ¬ p |
| 119 | - 1 ¬(p & q) - 2 ¬r -> q- 3 ¬p -> r I- r |
| 120 | - 1 p -> q - 2 ¬ q- 3 ¬ p -> ( r & s) I- r & s |
| 121 | - 1 p & q - 2 r -> ¬q- 3 ¬r -> s I- s v¬p |
| 122 | - 1 r v s - 2 ¬t -> ¬p- 3 r -> ¬q I- (p & q) -> (s & t) |
| 123 | - 1 q -> p - 2 t v s- 3 q v ¬s I- ¬(p v r) -> t |
| 124 | - 1 p -> q - 2 (p & q) -> r- 3 ¬(p & r) I- ¬p |
| 125 | - 1 r -> ¬p - 2 ¬ (q & ¬r)I- p -> ¬q |
| 126 | - 1(s & ¬r) -> q - 2(¬t & ¬q) -> w- 3 t -> ¬m - 4 s - 5 ¬p v ¬q - 6 ¬(¬m & r) I- p -> w |
| 127 | - 1 ¬m v p - 2 q -> m- 3 x v t - 4 t -> (r & s) - 5 ( s & r )->w I-(¬p->¬q)->(¬w->x) |
| 128 | - 1 (p&q)->¬r - 2 r v (s&t)- 3 p <-> q-> I- p -> s |
| 129 | - 1 p->¬(¬rv¬s) - 2 ¬¬s ->¬u- 3 ¬m v n - 4¬n - 5 p & q I-¬(u v m) |
| 130 | - 1 t -> m - 2 ¬(u & p)- 3 n ->¬m - 4¬(¬p & ¬w) - 5 ¬n -> ¬s - 6 z -> u - 7 ¬(r v ¬t) - 8 ¬z -> s I- w v q |
| 131 | - 1 ¬p -> ¬ s - 2 ¬p v r- 3 r -> ¬t I- ¬s v ¬t |
| 132 | - 1 ¬t v ¬r - 2 ¬r -> p- 3 ¬(¬r &p) I- ¬t |
| 133 | - 1 r -> s - 2 s -> q- 3 r v (s & t) I- ¬q -> (t &s) |
| 134 | - 1 ¬r -> s - 2 s -> (p &q)- 3 r -> t - 4 ¬t I- q |
| 135 | - 1 ¬s v ¬r - 2 ¬r -> ¬t- 3 ¬p I- ¬t & ¬p |
| 136 | - 1 (r v q) -> p - 2 t -> (¬p&¬m)- 3 t v s I- r -> s |
| 137 | - 1 r -> n - 2 t -> (p v r)- 3 (q v n) -> t - 4 ¬n I- ¬p -> ¬q |
| 138 | - 1 ¬q -> ¬(mvt) - 2 ¬r -> ¬(p&q)- 3 ¬s -> p - 4 ¬n-> t I- ¬(r v s) -> n |
| 139 | - 1 p -> q - 2 p->(q -> r)- 3 q->( r -> s) I- p -> s |
| 140 | - 1 ¬p -> ¬s - 2¬p v r- 3 r -> ¬t I- ¬s v ¬t |
| 141 | - 1 ¬(m v n) - 2 s -> ¬t- 3 ¬m -> t I- ¬(s & q) |
| 142 | - 1 p->(q<->s)-> - 2 ¬s & m- 3 p v ¬q - 4 q & t I-(¬p &t)v(w & r) |
| 143 | - 1¬(m & ¬n) - 2¬(t & ¬u)- 3 ¬(n &¬p) - 4 ¬(s & ¬t) - 5¬(q & ¬r) - 6¬ (u v w) - 7 ¬(r &¬s) - 8 ¬(p &¬q) I- ¬m |
| 144 | -1 ¬q -> r -2 t -> ¬ q-3 ¬ s -> ¬ q I- t v ¬s -> r |
| 145 | 1. – ¬(p & q) 2. – p -> r3. – q v ¬r I- ¬p |
| 146 | 1. ¬s v ¬p 2. – q -> ¬r3. – t -> s & r I- t -> ¬(p v q) |
| 147 | 1. – p &¬q 2. – ¬r -> q3. – r -> s I- p & s |
| 148 | 1. – p & ¬t 2. – s -> t3. s v q 4. – (q v p)-> u I- u |
| 149 | 1. – ¬r -> s 2. – s -> (p & q)3. – r -> (t & w) 4. – ¬ t I- q v (m & n) |
| 150 | 1.-m->¬ (¬p&¬q) 2. – q -> t3. – p -> s I- m -> ¬(¬t & ¬s) |
| 151 | 1. – p & ¬q 2. – q v ¬r3. – p -> ¬s I- ¬(s v r) |
| 152 | 1. – (p v q) -> (r&s) 2. – ¬rI- ¬p |
| 153 | 1. – p -> q 2. – q v r3.- (r&¬p)->(s&¬p) 4.- ¬q I- s |
| 154 | 1.- ¬s->¬(p v ¬t) 2.- t->¬(¬w v ¬n)3. – ¬s & ¬w I- m v n |
| 155 | 1. – ¬(¬mv¬s) 2. – u -> q3. – t -> ¬q 4. – w -> t 5. – ¬m v w I- ¬(u & n) |
| 156 | 1. – p -> q 2. – t -> m3. – ¬(u &w) 4. – ¬(¬p v ¬z) 5. – ¬r -> ¬q 6. – n -> u 7. – ¬t -> s 8. -¬(m & ¬n) 9. – r -> ¬s I-¬w |
No hay comentarios:
Publicar un comentario